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From the basic premises of Molecular orbital theory it is shown that the various electronegativity
equalization theories, at present in the literature, are fundamentally the same, and are expressable in a
unified theory, developed herein. General relationships are established for calculating equilibrated
electronegativities, electron densities and extra ionic resonance energies. The Equalization method
is related to other methods for calculating the properties of localized bonds in molecules.

Auf der Grundlage der MO-Theorie werden die verschiedenen bekannten Theorien des Elektro-
negativititsausgleichs im Rahmen einer Theorie dargestellt. Allgemeine Regeln zur Berechnung aus-
geglichener Elektronegativititen, Elektronendichten und der zusitzlichen ionischen Resonanz-
energien werden angegeben. Die Methode des Elektronegativititsausgleichs wird mitanderen Methoden

zur Berechnung der Eigenschaften lokalisierier Bindungen in Molekiilen verkniipft.

On montre, & partir des fondeients de la théorie des orbitales moléculaires, que les diverses
théories d’égalisation de 1’électronégativité, qui ont actuellement cours, sont essenticllement les
mémes et peuvent £tre exprimées dans une théorie unifiée développée ci-aprés. Des relations générales
sont établies pour calculer les électronégativités égalisées, les densités électroniques et oes énergies de
résonance ionique supplémentaires. La méthode d’égalisation est reliée aux autres méthodes de calcul
des propriétés des liaisons localisées dans les molécules.

, Introduction

There are few methods for estimating the electron density distributions in
saturated molecules, other than empirical ionic character versus electronegativity
difference relationships. Explicit incorporation of electron repulsions in electro-
negativity schemes [1, 2], and extension of semi-empirical n-electron methods to
g-electron systems [3] in order to calculate charge distributions in non-conjugated
molecules have been attempted. In this paper, the theoretical basis of current
Electronegativity Equalization theories is developed, and general relationships
for calculating charge densities are derived for the first time, in an attempt to
unify the various existing Electronegativity theories.

Theory and Discussion
A. Molecular Orbital Theory of Electronegativity Equalization

The principle that the electronegativities of all the atomic orbitals in a molecule
must be equal will now be developed from molecular-orbital theory.

Let n,; be the electron density of the u'® atomic orbital ¢, in the i molecular
orbital 1;, then the total electron density of ¢, over all the occupied molecular
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orbitals is n,, where
M
n,=y n, (L
i=1
0.

and M signifies the highest occupied M
molecular orbital y; is N;, where

The molecular electron density of the

P

N;= Z Ry 2

u=1
and P designates the total number of AO in the MO. N; is a constant equal to 0,
1 or 2 electrons, whereas n,; and n, vary between 0 and 2 electrons. Thus the usual
assumption of LCAO-MO theory is made that the total electron density of the
molecule can be partitioned between the AOs.
If we now assume that the total electronic energy of the molecule Eyq; , can
be partitioned into a sum of atom energies E; then

Eyor= ), EL(n}, n} ... ng) ()
L

where E; is a function of the occupancy of all the K atomic orbitals, n,, on atom L.
In order to find the values of n,; corresponding to the minimum value of Eyq; ,
and subject to the constraints of equation (2)

P
0=N,—Yn, i=1-M 4

u=1

then the Lagrange multiplier method may be used, and a function ¢ defined so that

e¢=EyoL + f A (Ni - i nui> : )]

i=1 u=1
Hence o M P
oY LN, 0 An,
¢ —0= OEyo1 on, _ 1;1 o _ i§1 u;1 il ©6)
ong;  \ on, ong )  onmy, ony
0
From Eq. (1), (ﬁ) is equal to 1, and since N; is a constant the second term in
the equation vanishes. Hence
OE
(—a;—'fi>=,1i i=1->M. (7)
Now the orbital ¢, is on a particular atom L hence
L L
PEyor) a[; E;(n} ... 1t )] o
ont ) ony; ’

¢E
But ﬁ has been defined as the Orbital Electronegativity X~ previously [7],

and n! is particular to atom L, so that from this definition and Egs. (5) and (6)
it follows that

Xt=1 i=1-M. )

Since u is a general index for any atomic orbital on atom L, and L is a general

index for any atom in the molecule, while i is a general index for any molecular
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orbital, this equation means that the electronegativities of all the atomic orbitals
forming the molecular orbitals are equalized in the molecule.

While it is obvious that E; is dependent on the occupancy of all its atomic
orbitals, n} to nl, only the occupancy of the valence shell atomic orbitals changes
when the atom is in the molecule according to usual chemical theory [15]. Hence
if n% to nk are inner shell occupances they remain constant and equal to two
electrons; consequently E; and Eyg; are unchanged and are then dependent
only on nk,, to n&, the valence orbital occupancies. If inner shell orbitals are
involved in molecular formation, as considered by Peters [21] then their occupancy
must be explicitly considered.

Klopman [1] showed that minimizing the total molecular energy E, of two
atomic orbitals ¢, and ¢, required

0Ey _ 0Ey (10)
on, on,
where n, represents the total charge of ¢,. Thus if the electronegativities were
to be identified with the terms 0Ey/0n,, this equation is equivalent to equalizing
the electronegativities.

The assumed partitioning of the molecular energy into atom energies cannot
be rigorously justified for polyatomic systems; it is valid however for systems
involving localized two-centre bonds. The electronegativity equalization ex-
pressions for two MO-methods which use localized bond concepts are derived
below.

B. Expansion of Molecular Energy into Atom Energies

The partition concept will be applied to the simple Hiickel method [4]. The
energy of a two-centre, two-electron bond is,

EM0L=263 otu+2c,% Ot,,+4cuc,,ﬁm, (11)
where ¢, and ¢, are the coefficients of the ¢, and ¢, in the bonding molecular
orbital y, a, and a, are the AO Coulomb integrals, and f,, is the resonance
integral between ¢, and ¢,. Since overlap is neglected in the simple Hiickel
method,

n,=2c? (12)
n,=2c? (13)
hence (n,n)t? =2c,c, (14)
and n,+n,=2 (15)

Consequently within the restraints of the Hiickel method it is possible to partition
Eyso1, such that is the sum of two atomic energies.

EMOL = Eu + EU . (16)
Where the atomic energies are of the form
Eu=nuau+ﬂuv(2nu_n3)1/2 (17)

evidently a function of n, alone. From Eqgs. (10) and (17), the electronegativity of
such an atomic orbital in a molecular orbital can be derived as

dEu =0 ﬁuv(1 —n,

dn v 2n,—n? (172)

X,=
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X, is similarly defined in terms of «,, f,, and n,. The electronegativities X, and X,
will be equal within the bond as derived in Eq. (10).

I1. Applying the partition concept to Klopman’s SCF-LCAO-MO method,
where the energy for a two-centre, two-electron bond [5] is:

2 2
Eyor=,BY +1,BY + (A, + L)+ - (4, + L)+ 2Bufmn)  (18)

then E,,o; may be partitioned into atomic energies E, and E, where
2

T (AL + T + B2, — )2, (19)

B* is the interaction energy of an electron in ¢, with the nucleus, inner-shell
electrons, and other valence-shell electrons in different atomic orbitals on the
same atom as ¢,. A, is the repulsion energy of two electrons in ¢ of opposite spin,
B.. is the resonance integral relative to the core Hamiltonian, and —TI,, is the
repulsion energy between an electron in ¢, and one in ¢, [5]. The equalized
orbital electronegativities in the bond can be derived as

E,=n,Bf+

dE n, _ Bl — 1)
X, =—L =B+ —2(4, +T, Luwr” W
u dnu Bu + 2 ( U + uu) + l/znu—_nf (20)

Thus in both the simple Hiickel and the SCF-LCAO-MO method Eyo; of
two-atom molecules can be partitioned into atomic energy terms, and the electro-
negativity equalization concept of Eq. (10) is valid. Such a partition of Eyqy is
very complicated in polyatomic molecules, unless these molecules can be treated
in terms of localized two-electron, two-centre bonds; that is the molecule is
treated by a valence bond approach within the molecular orbital theory. In the
SCF-LCAO-MO method for a given AO in a given bond, the effects of other
atomic orbitals on the same atom are included in the B¥, A, and I, as effective
core integrals.

It is significant that these derivations show that the electronegativities X, and
X, are equalized in the bond only when the resonance integral §,, is included in
both the Hiickel and SCF-LCAO-MO cases. Pritchard [6] argued that the
electronegativities were not equal when f,, was included, because he started from
a definition of X which did not include §,,, and in which the X are in equilibrium
in the absence of §,,, namely a non-MO theory.

C. General Relationships

It is now possible to derive some new general relations which will be shown
to include diverse specific relations already in the literature.

The electronegativity of an atom or orbital can be related to its electron
density by the bond electronegativity function X; [7], which has generally been
assumed to be linear.

Eqgs. (17a) and (20) show that in the specific methods considered X is not
a linear function of n,, since the expression (1 —n,)/}/2n,—n2 is non linear.
However this expression proves to be almost linear in the range 04 <n, < 1.6 [1],
that is for bonds which are less than 60 % ionic; when n, lies outside this range
then the linear assumption attaches too low a value of X to the n, and conse-
quently exaggerates the ionic character of the bond. Consequently when n, is
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within the range quoted a linear relation of the form [8, 9]

Xo=F +G.0 (21)
can be used, where X, is the electronegativity of the atom or orbital L, Q; is the
electron density of L', whether L be an atom or orbital, and F, and G, are the
bond electronegativity parameters for L. X; always decreases with increasing Q; .
When there is a molecular charge distribution in which all the X; have an

equilibrium value, X* then -
X*=X{=F_+G.0f. (22)

When both sides of (22) are divided by G and summed over all L, the equilibrium

bond electronegativity becomes:

1 F,
xX*yY ——=Y"L+Y0r. (23)
L GL L GL L

Since the total electron density, ), Of, equals Q*, then,
L

LFR/GL+0Q* Y F/GL+Q
X*= =% =k : (24)
2 1/Gy 2 1/Gy
L L
Where Q* = Q since the total electron density is constant; only the individual
Q, vary.
If the bond electronegativity parameters F; and G are known, X* may be
calculated for any molecule and subsequently the electron density for each atom
(or orbital) in the molecule can be calculated:

X*—F
* L
0t="¢-
Extra Ionic Resonance Energy

(25)

A general expression will now be derived for the extra ionic resonance energy
[10] by assuming that the bond electronegativity (Eq. 21) is the first derivative
of the atom energy with respect to charge (Eq. 5). The energy E; for an atom or
orbital as a function of the electron density Q;, in the bond is,

E(QU)=EL(0)+F 0, +3GL0f. (26)
For the free atom before bond formation E; would be expressed as
Ep=E.(0)+ F 07 +3GL(QD) (27

where Q) is the charge Q; before bond formation. The change in energy, AE;,
on bond formation is therefore

AE, =Ef — E) = R [Q0F - 071+ 3GL[0F* — (D)1 (28)
Using the general equations for electronegativity and charge Egs. (21) and (25)
gives
i) the charge difference
) g . XD
0 -00="7 " 29)
and L
(i) the charge sum
X*+ X2 —2F,
ot +Qf= g+ (30)
L

for the free and bonded condition of L.
! Some authors [8] have used the net charge of L, as noted below.
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Substituting these Egs. (29) and (30), into that for the energy change (28) gives
a general expression for the energy change in terms of the equilibrium and free
electronegativities
_ (X -0
B 2G, '

Now the extra-ionic resonance energy R for the molecule is obviously the sum of

the changes in atom energies, (i.e. the change in molecular energy upon bond

formation), within the partition condition, hence

(X*? - (X0
2GL )

AE, (1)

R=Y (4E)=Y (32)
L L

Thus it has been possible to derive the extra-ionic resonance energy expression

within a molecular orbital framework, in terms of the equilibrium bond electro-

negativity and free atom (or orbital) electronegativity difference.

Extant Electronegativity Equalization Theories

It is now possible to consider how the various extant theories of electro-
negativity equalization fit into this general theory, despite their being derived
outside the molecular orbital theory.

The first theory is one applicable to the molecule as a whole, and not focussing
on two centre bonds within the molecule.

I. Sanderson’s Method [8]. The bond electronegativity parameters in Sander-
son’s theory F; and G are not independent of each other but related by,

Gy = (F )" (33)

Consequently if this relationship is substituted into the equations for the equilib-
rium electronegativity and charge these become respectively

X* F)'? Ly

- (T +Q)/;<F—L> (34)
1 \1/2

and * = (F_L> (X*—F). (35)

Sanderson defines his Q; as net atomic charges, not as populations as has been
done above. These formulae were not of course derived by Sanderson, and it is
obvious that his assumption that X* is equal to the geometric mean of all the
F in a molecule [8] is incorrect. The expression for X* (equation 34) reduces to
the geometric mean of the F; only in the case of a diatomic molecule with a single
bond. But while it is thus a theoretically inaccurate theory, practically the use of
the geometric mean for polyatomics leads to quite small errors since the geometric
mean is usually a good approximation to Eq. (34). Further it is necessary to
emphasize that this theory deals with atomic electronegativities, and equalizes
these over the whole molecule, so that it cannot describe the properties of bonds.

I1. Other Theories. The remaining theories to be considered focus on two
centred bonds.
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Initially it will be shown that Egs. (34) and (35) do reduce to the geometric
mean for a diatomic molecule, LM, when

(F)" + ()"

1 1/2 1 1/2
(ﬁ) *(F—M)

or X*=(F_F,,)"?, as assumed by Sanderson in his derivation [8].
The general expressions for the equilibrium electronegativity and charge for
a two-centre bond, whether between atoms or orbitals are:

X*=

F,G,+F,G,+0QG,G
¥_ 1192 20y 192
X ST, (36)
F,—F +0G,
and i R SIS k3 37
0r G,+G, (37)

The ionic character i of the bond can be defined as the change in electron density
at an atom or in an orbital on bond formation, hence

i=10f - Qfl. (38)
Since, the total electron density Q = ) Qf then
L
0=01+03=01+03 (39)
. (F,+G,0)~(F; +G,0Y)
so that i= 40
6, +G) o

0_ yoO AXO
G,+G, G,+G,
since XP=F +G.0Q). (42)

Thus the ionic character of a two-centre bond is proportional to the difference
in the free-atom (or orbital) electronegativities, and inversely proportional to the
sum of the bond electronegativity G parameters. Thus current Electronegativity
equalization methods which assume that the electronegativity is linearly dependent
on the charge as in Eq. (21) agree with the intuitive chemical view that the ionic
character of a bond is proportional to the electronegativity difference. However,
this general theory proves that no unique function relating i to 4X° can be
obtained, since the G parameter differs for each atom, and attempts to find such
a unique relationship are doomed to failure.

Wilmhurst [11] intuitively derived as an expression for i,

1 Xm— X7
i= XTxT 43)
Eq. (41) will only have the form of Eq. (43) if the bond electronegativity function
is of the form X, =F, + XPQ,

in which the G, bond electronegativity parameter is replaced by the free neutral
atom Pauling electronegativity X7 . However, the G, parameters are all negative,
whereas the Pauling electronegativities are always positive, hence the equation
must be of the form

Xy =F — XII.) oL
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so that the electronegativity will decrease with increasing negative charge on L.
In a two-centre bond, atomic neutrality occurs when Q; is unity, and this is
when X; must equal the free atom Pauling electronegativity Xf. Therefore
F, = 2X{ and the final form of the equation necessary to generate Wilmhurst’s [11]
ionic character equation is
X, =2XF - X{ 0. (44)

This equation has the property that the free atom Pauling electronegativity is X{,
the L™ electronegativity is 2XF and the L™ electronegativity is 0. The validity
of the theory can only be discussed when there is either of theoretical estimation
or empirical estimation of the F; and G, to compare with 2Xf and — X{. Theo-
retically F; has the units of electronegativity and G, of electronegativity per unit
charge, so that F; should not be equal to — 2Gy . Empirically [12, 7] the relationship
is invalid for the valence states of monovalent atoms in ¢-bond formation, for
which the valence state electronegativity is equivalent to the atomic electro-
negativity of Pauling, invalid for atoms forming n-bonds [12] and invalid for
tetrahedral carbon [7], all in a quantitative sense; it is qualitatively invalid in
that F; &= —2G, even in sign in many cases [12].

The Hinze, Whitehead, and Jaffe bond electronegativity function X,(n,) for
an atomic orbital ¢, with occupation number n, gives [7],

X - x
o 2(c,+cy) 43)
since [7] X, (n)=>b,+2¢c,n, 46)

where b, and ¢, are coefficients. In a two-centre bond formed from AOs initially
singly occupied

X0 =X,(n,=n)=1)=X,(1) (47)
. 1X(1) - X, (1))
whence, i= ety (c. e (43)

in agreement with the general theory developed above.
The expression for the extra ionic resonance energy R is also simplified for
two-centre bonds to

R=—(X7 - X{)*/2(G, + G,). (49)
Hence R is proportional to the square of the difference in electronegativities of the
free atoms before bonding in agreement with Pauling’s original ideas [10].
There is no unique dependence of R on (X2 — X?)? because G, differs for each atom.
The Hinze-Whitehead-Jaffe bond orbital electronegativity function gives for
the extra ionic resonance energy
R —[XO- X0
4(c, +c,)
where ¢, and ¢, are singly occupied valence orbitals [7], which will be identical
x to the x° for monovalent atoms.

(50)

D. Bond Electronegativity Functions

The only difficulty in applying the electronegativity equalization conditions
to calculate the electron densities, extra ionic resonance energies, and effective
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group electronegativities in molecular systems lies in evaluating the bond electro-

negativity parameters. Numerous approximate techniques have been used and

some of these are briefly considered below in the light of the Partition theory.
Sanderson [§] used a relation ‘

XK QU= X" (QL=0)+Qrd, (51)
to relate XJR, the Stability Ratio definition of the Atomic Electronegativity of
atom L, to @, the net “partial charge” of an atom, where &, is an empirically
determined function depending upon the nature of atom L. He assumed that the
electronegativities X® of all the atoms in a molecule should be equalized, in
agreement with Eq. (10) except that Eq. (10) is an orbital and not an atom valid
theory.

3 4 5
Fig. 1. The plot of §; against C; for specific atoms X of the first and second periods of the periodic
table using the results in references [9] and [8]

Element Cy dx Element Cx Oy

F 8.70 4.988 Cl 5.65 4618
O 7.63 4.749 S 5.08 4216
N 6.21 4.408 P 447 3.802
C 5.59 4.050 Si 3.38 3.368

Iczkowski and Margrave [9] developed an atomic electronegativity function
X4 which varied with partial atomic charge as a method of estimating the electro-
negativity function parameters here represented is By (i.e. F) and 2C, (ie. Gy)

X{H(Qy) = BL+2C 01 = X1 (@ =0)+2C0, . (52)
The similarity between the definitions of X{* and X® suggests that the empirical
functions §; and C; should be proportional as shown in Fig. 1. Although the C,

values are available for only eight elements [9], two different pseudo-linear
relationships, one for each period of the periodic table, are obtained. Both methods
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suffer from the fact that they treat atoms as a whole and do not focus in any way
on the orbitals on the atoms, but they both fit the general partition theory.
The parameter ¢; is evaluated from the empirical relationship [8],

8. =208/ X %(Q.=0) (53)
while C; is obtained using atomic energy data; no interatomic energy terms are
included in the partitioned atom energy terms E; (Eq. 4) and it is therefore im-
plicitly assumed that the orbital charges obtained by minimizing the sum of the
E, are identical to those which would be obtained if the entire molecular energy
Eyor, Were minimized.

Hinze et al. [7] defined an orbital electronegativity X, as,

X,y = A0

in which n, is the electronic charge density of an orbital and the dependence of
X, (n,) on the charge densities of orbitals other than ¢, is included in the coefficients
b, and ¢, [7]. These coefficients are obtained by using experimentally known
E(n,) for n,equal to 0, 1, and 2 [12], as,

b,=151, —05E,, (55)

¢,=05(E, ~1,). (56)
The E, and I, are valence state electron affinities and ionization potentials
respectively [13], whence,

X,=0531, —E,)+(E, —I,)n,. 57
On the other hand, Klopman expressed electronegativity [5] as,

O(E,(n,) n,A,

X = W) Zuu

¢ on, " 2

where E;, is a continuous function of n, once the bond is formed but not when the
orbital is non-bonded [1]. In this theory the two parameters B,, the attraction
energy of an electron in orbital ¢, for the nucleus and filled inner shells, and A4,

are required. They can be estimated from the known energies of an isolated, non-
bonded atom, with

=b,+2¢,n, (54)

u

(58)

B,=1I, (59)
the ionization potential of the electron in orbital ¢,, and
A, =E, -1, . (60)
I —_
Thus, x =t ""(f"u Lu) 61)

X, is called the Molecular orbital bond electronegativity, since it is derived for use
in the Molecular Orbital theory.

The energies and electronegativities in the above theories both fit the general
partition theory and are related by

AE,=E,—E, (62)
and 4X,=X,—X,. (63)
Thus AE,=0.5n,, —E,)(1—-0.5n,) (64)

and AX,=05(I, —E,)(1—n,). (65)
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Both the terms 4E, and 4X, increase as the difference between the ionization
potential and electronaffinity increases; 4E, is zero at n,=0 and n,=2 and a
maximum atn, = 1;4X,iszero atn, =1 when both X, and X; areequaltol, —E,,
the Mulliken Electronegativity definition [14], Fig. 2.

The physical significance of the differences can be seen by considering the
values at n,=1; E,(n,=1) is equal to (3/41, +1/4E,) while E, is simply I,
Thus the molecular orbital energy E. at n, = 1 is equivalent to that for two electrons
each spending one-half the time in orbital ¢,, with no correlation between the two
electrons. On the other hand, E, at n,= 1, corresponds to complete correlation
of the electronic motion such that if the first electron occupies ¢,, the second
electron is in the other orbital forming the bond. The E;, function underestimates
inter-orbital electron correlation, while the E, function overestimates it, since
electronic motions are only partially correlated [15].

The ionic characters of two-centre, two-electron chemical bonds can be
calculated using X, or X_ in Eq. (48). Since X,(n,=1)= X,(n,=1) and since from
Egs. (56) and (61)

c,=2c, (66)

then iy =T - (67)

161 &

ENERGY IN ELECTRON VOLTS
d

24 AE,

0 04 08 12 168 20
ORBITAL OCCUPATION NUMBER Ny

Fig. 2. The plot of the Hinze, Whitehead and Jaffe energy [7] E, and the Klopman energy [5] E,
and their difference 4 E, in electron volts against the number of electrons in the orbital n,. E, is always
greater than E, and 4E, is symmetric about n,= 1. The electronegativities y, and y; are the same at
n,=0 or 1 but very different at n,=2. E, reaches a maximum before n,=2; E, reaches a maximum
after n,=2.

The example used is chlorine s?p>p?p with the s?p*p” as core, whence Iy, = 15.08 eV and

Ey @iy =373 ¢V. Similar curves occur for any other atom or orbital
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Thus estimates of the ionic character using these two electronegativity functions,
are in the ratio 1: 2.

Since neither of these extremes is a true representation of the system it may
be more accurate to use energy equations which represent the midway point of
partial correlation. Thus,

E;=3(E,+E)

68
=(1.251, —025E,)n,+n;(0.375E, —0.3751,). (68)
The electronegativity for n, =1 is,
OE!
X/ = 871" =05(1,, + E,,) = Xyuitiken (69)

the same as for the individual X, and X,. These three energy relations have

"
on,
The ionic characters from this latter theory should be more accurate than those
from either the Hinze et al. or Klopman theories (see Table), within the limitations
of the Partition theory.

maximum energy as given by =0, namely at n,= 1.5, n, =20, n, = 1.67.

Table. Theioniccharactersof several diatomics, calculated using X, (1)and C, (expressed as percentages)

LiH 312 NaH 333

LiF 552 NaF 56.7 HF 221

LiCl 528 NaCl 549 HCl 123 FCl 129

LiBr 505 NaBr 53.0 HBr 73 FBr 18.8 CIBr 6.5

Lil 485 Nal 510 HI 5.6 FI 205 ClI 85 BrI 22

These values are calculated assuming pure s or p orbitals on the combining atoms.

Hinze et al. extended their method to saturated polyatomic molecules by using
the approximation of localized, two-centre bonds. Repulsions between electrons
of the same atom are explicitly considered in this method, and therefore the
calculations must be iterated to self-consistency. A simplified version of this
theory, the SGOBE method, has been used extensively [17] to calculate electron
density distributions in a large number of organic molecules [18] and to derive
a bond electronegativity function from the LCAO MO theory [19].

Huheey’s method [20] is based on this theory but suffers from the defect of
equalizing the X of the initially singly occupied bonding atomic orbitals over the
whole molecule. It is therefore an orbital version of Sanderson’s theory. It would
be a valid approach only if Eq. (3) for the partitioning of the molecular energy was
valid for a polyatomic system.

Inclusion of Interatomic Terms. Ferriera [2], Jorgenson [16] and others have
. advocated the use of bond electronegativity functions and including interatomic
attractions and repulsions with the free atom energy terms in the definition of
the E; . The effect of this correlation is especially important in considering bonds
of high polarity. They will be more fully considered in a later paper, within the
theory developed in this paper.
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