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From the basic premises of Molecular orbital theory it is shown that the various electronegativity 
equalization theories, at present in the literature, are fundamentally the same, and are expressable in a 
unified theory, developed herein. General relationships are established for calculating equilibrated 
electronegativities, electron densities and extra ionic resonance energies. The Equalization method 
is related to other methods for calculating the properties of localized bonds in molecules. 

Auf der Grundlage der MO-Theorie werden die verschiedenen bekannten Theorien des Elektro- 
negativit~itsausgleichs im Rahmen einer Theorie dargestellt. Allgemeine Regeln zur Berechnung aus- 
gegliehener Elektronegativitgtten, Elektronendichten und der zus~itzlichen ionischen Resonanz- 
energien werden angegeben. Die Methode des Elektronegativit~itsausgleichs wird mit anderen Methoden 
zur Berechnung der Eigenschaften lokalisierter Bindungen in Molekiilen verkniipft. 

On montre, ~t partir des fondements de la th6orie des orbitales molrculaires, que les diverses 
throries d'rgalisation de l'61ectronrgativitr, qui ont actuellement cours, sont essentiellement les 
m~mes et peuvent &re exprimres dans une throrie unifire drveloppre ci-aprrs. Des relations grnrrales 
sont 6tablies pour calculer les 61ectronrgativitrs 6galisres, les densitrs 61ectroniques et oes 6nergies de 
rrsonance ionique supplrmentaires2 La mrthode d'rgalisation est relire aux autres mrthodes de calcul 
des proprirtrs des liaisons localisdes dans les molrcules. 

Int roduct ion 

There  are  few m e t h o d s  for e s t ima t ing  the e lec t ron  dens i ty  d i s t r ibu t ions  in 
s a tu ra t ed  molecules ,  o the r  t han  empi r i ca l  ionic  cha rac te r  versus e lec t ronegat iv i ty  
difference re la t ionships .  Expl ic i t  i n c o r p o r a t i o n  of  e lec t ron  repuls ions  in e lect ro-  
nega t iv i ty  schemes [1, 2], a n d  extens ion  of  semi-empi r ica l  n-e lec t ron  me thods  to 
a -e l ec t ron  sys tems I-3] in o r d e r  to ca lcula te  charge  d i s t r ibu t ions  in non -con juga t ed  
molecules  have  been  a t t emp ted .  In  this  paper ,  the  theore t ica l  basis  of  cur ren t  
E lec t ronega t iv i ty  Equa l i z a t i on  theor ies  is deve loped ,  and  genera l  re la t ionships  
for ca lcula t ing  charge  densi t ies  are  der ived  for the  first t ime,  in an  a t t e m p t  to  
unify the  va r ious  exist ing E lec t ronega t iv i ty  theories .  

Theory  and Discussion 

A. Molecular Orbital Theory of Electronegativity Equalization 

The  pr inc ip le  that the electronegativities of  all the atomic orbitals in a molecule 
must be equal will now be deve loped  f rom mo le c u l a r -o rb i t a l  theory.  

Let  nul be the  e lec t ron  dens i ty  of  the  u 'h a tomic  o rb i t a l  ~b u in the  i th mo lecu la r  
o rb i t a l  ~pl, then  the to ta l  e lec t ron  dens i ty  of  ~bu over  all  the occupied  mo lecu la r  

* Present address: Chemistry Department, University of Texas, Austin, Texas, USA. 
** Present address: Chemistry Department, University of Bristol, England. 



Electronegativity Equalization 39 

orbitals is n,, where 
M 

nu = E nu, (1) 
i = 1  

and M signifies the highest occupied MO. The molecular electron density of the 
molecular orbital toi is Ni, where 

P 

Ni = Z n,~ (2) 
u = l  

and P designates the total number of AO in the MO. N i is a constant equal to 0, 
1 or 2 electrons, whereas n,~ and n, vary between 0 and 2 electrons. Thus the usual 
assumption of LCAO-MO theory is made that the total electron density of the 
molecule can be partitioned between the AOs. 

If we now assume that the total electronic energy of the molecule EMOL, can 
be partitioned into a sum of atom energies EL then 

E.oL = Z #,) (3) 
L 

where EL is a function of the occupancy of all the K atomic orbitals, n,, on atom L. 
In order to find the values ofn,i  corresponding to the minimum value Of EMo L, 

and subject to the constraints of equation (2) 
P 

0 = Ni - Z n.i i = 1 ~ M (4) 
u = l  

then the Lagrange multiplier method may be used, and a function e defined so that 

= E M O  L -}- i~_~i �9 ( 5 )  

Hence M M P 

8 Z 2iN, c~ Z Z S, n., 

a..---7 = 0 =  / a. . ,  a,,., 

From Eq. (1), 2 8n,~ / is equal to 1, and since N~ is a constant the second term in 

the equation vanishes. Hence 

k 8n, / = 2 i  
i= l--*M. (7) 

Now the orbital ~b, is on a particular atom L hence 

DEL 
But 0 - ~ .  L has been defined as the Orbital Electronegativity X L previously [7], 

L is particular to atom L, so that from this definition and Eqs. (5) and (6) and n. 
it follows that 

L _ _  X .  - ).~ i = 1 ~ M .  (9)  

Since u is a general index for any atomic orbital on atom L, and L is a general 
index for any atom in the molecule, while i is a general index for any molecular 
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orbital, this equation means that the electronegativities of all the atomic orbitals 
forming the molecular orbitals are equalized in the molecule. 

While it is obvious that E L is dependent on the occupancy of all its atomic 
orbitals, n L to n L, only the occupancy of the valence shell atomic orbitals changes 
when the atom is in the molecule according to usual chemical theory [15]. Hence 

L if n L to nm are inner shell occupances they remain constant and equal to two 
electrons; consequently E L and Euo L are unchanged and are then dependent 

L to L the valence orbital occupancies, If inner shell orbitals are only on nm+ 1 ns, 
involved in molecular formation, as considered by Peters [-21] then their occupancy 
must be explicitly considered. 

Klopman [1] showed that minimizing the total molecular energy EM of two 
atomic orbitals 4~. and ~b~ required 

3 E  M O E  M 
- - -  ( 1 0 )  

3n~ ~n~ 

where n, represents the total charge of ~b,. Thus if the electronegativities were 
to be identified with the terms aEM/On., this equation is equivalent to equalizing 
the electronegativities. 

The assumed partitioning of the molecular energy into atom energies cannot 
be rigorously justified for polyatomic systems; it is valid however for systems 
involving localized two-centre bonds. The electronegativity equalization ex- 
pressions for two MO-methods which use localized bond concepts are derived 
below. 

B. Expansion of  Molecular Energy into Atom Energies 

The partition concept will be applied to the simple Hfickel method [4]. The 
energy of a two-centre, two-electron bond is, 

2 2 2c2a~+4c.Gfl .o  (11) EMO L ~ C u O~ u -q- 

where c. and c~ are the coefficients of the q~. and q~ in the bonding molecular 
orbital % a. and a~ are the AO Coulomb integrals, and fl.v is the resonance 
integral between tku and ~b v. Since overlap is neglected in the simple Hfickel 
method, 

n, = 2c~ (12) 
nv = 2c 2 (13) 

hence (nunv) 1/2 = 2c .G (14) 

and n. + n v = 2 (15) 

Consequently within the restraints of the Hfickel method it is possible to partition 
EMOL such that is the sum of two atomic energies. 

EMO L = E u + E v . (16) 

Where the atomic energies are of the form 

E.  = n .e .  + fl.v(2n. - n2) 1/2 (17) 

evidently a function of n. alone. From Eqs. (10) and (17), the electronegativity of 
such an atomic orbital in a molecular orbital can be derived as 

X.  = dE~ fl.~(l - nu) (17a) 
dn--V = + Z 75K-Z. - 
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Xv is similarly defined in terms of ~v, fl~. and n~. The electronegativities X. and X~ 
will be equal within the bond as derived in Eq. (10). 

II. Applying the partition concept to Klopman's SCF-LCAO-MO method, 
where the energy for a two-centre, two-electron bond [5] is: 

2 2 
n u _ nv  _ 

-~- (Av + EMOL = n.B* + n.B* + --4- (A. + r.v ) + Fu~ ) + 2fl.v(n.n~) 1/2 (18) 

then EMOL may be partitioned into atomic energies E. and Eo where 
2 

_ . n. (A~ + F..) + fl.,,(Zn. - n2) 1/2 (19) E . - n , , B .  + ~ -  

B* is the interaction energy of an electron in q5 u with the nucleus, inner-shell 
electrons, and other valence-shell electrons in different atomic orbitals on the 
same atom as r A~ is the repulsion energy of two electrons in ~b of opposite spin, 
fl.o is the resonance integral relative to the core Hamiltonian, and -F .~  is the 
repulsion energy between an electron in q~. and one in q~v [5]. The equalized 
orbital electronegativities in the bond can be derived as 

f l . ~ ( 1  - n . )  X . -  dE .  n. - F.v) + . (20) 
- d n - - - - ~ = B * + ~ - ( a . +  

Thus in both the simple Hiickel and the SCF-LCAO-MO method EMO L of 
two-atom molecules can be partitioned into atomic energy terms, and the electro- 
negativity equalization concept of Eq. (10) is valid. Such a partition of EMOL is 
very complicated in polyatomic molecules, unless these molecules can be treated 
in terms of localized two-electron, two-centre bonds; that is the molecule is 
treated by a valence bond approach within the molecular orbital theory. In the 
SCF-LCAO-MO method for a given AO in a given bond, the effects of other 
atomic orbitals on the same atom are included in the B*, A~, and F.. as effective 
core integrals. 

It is significant that these derivations show that the electronegativities X. and 
Xo are equalized in the bond only when the resonance integral fl.~ is included in 
both the Hiickel and SCF-LCAO-MO cases. Pritchard [6] argued that the 
electronegativities were not equal when fl.~ was included, because he started from 
a definition of X which did not include fl.v, and in which the X are in equilibrium 
in the absence of fl.~, namely a non-MO theory. 

C. General Relationships 

It is now possible to derive some new general relations which will be shown 
to include diverse specific relations already in the literature. 

The electronegativity of an atom or orbital can be related to its electron 
density by the bond eleetronegativity function X L [-7], which has generally been 
assumed to be linear. 

Eqs. (17a) and (20) show that in the specific methods considered XL is not 
a linear function of n., Since the expression (1 -n . ) /2n~ . -n2~  is non linear. 
However this expression proves to be almost linear in the range 0.4 < n. < 1.6 [1], 
that is for bonds which are less than 60 % ionic; when n. lies outside this range 
then the linear assumption attaches too low a value of X L to the n. and conse- 
quently exaggerates the ionic character of the bond. Consequently when n. is 
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within the range quoted a linear relation of the form [-8, 9] 

XL = FL + GLQL (21) 
can be used, where X L is the electronegativity of the atom or orbital L, QL is the 
electron density of L 1, whether L be an atom or orbital, and F L and G L are the 
bond electronegativity parameters for L. XL always decreases with increasing QL. 
When there is a molecular charge distribution in which all the XL have an 
equilibrium value, X* then 

X *  = XI* = F L d- G L Q*. (22) 
When both sides of (22) are divided by G L and summed over all L, the equilibrium 
bond electronegativity becomes: 

1 FL ~L Q* (23) X*~G, = ~ -  + �9 

Since the total electron density, ~ Q~, equals Q*, then, 
L 

Z FL/GL + Q* • FL/GL + Q 
X * =  L _ L (24) 

1/GL Z 1/GL 
L L 

Where Q*--Q since the total electron density is constant; only the individual 
QL vary. 

If the bond electronegativity parameters F L and G L are known, X* may be 
calculated for any molecule and subsequently the electron density for each atom 
(or orbital) in the molecule can be calculated: 

X * - - F  L 
Q* - (25) 

GL 

Extra Ionic Resonance Energy 

A general expression will now be derived for the extra ionic resonance energy 
[-10] by assuming that the bond electronegativity (Eq. 21) is the first derivative 
of the atom energy with respect to charge (Eq. 5). The energy E L for an atom or 
orbital as a function of the electron density QL, in the bond is, 

EL(QL)=EL(O)+FLQ L 1 2 + ~ GL QL" (26) 
For the free atom before bond formation E L would be expressed as 

E o = EL(0 ) _[_ FL Qo d -1~ GL~,.~SL!//')0"~2 (27) 
where QO is the charge QL before bond formation. The change in energy, A E L ,  

on bond formation is therefore 
1 , 2  02  A E  L -~ E* - E ~ = F L [ Q ~  --  QO] -1- ~GL[QL --  (QL) ] .  (28) 

Using the general equations for electronegativity and charge Eqs. (21) and (25) 
gives 

(i) the charge difference 
X* - X ~ Q. _ QO _ (29) 

and GL 

(ii) the charge sum 
Q~ + QO = x *  + XL ~ -- 2FL (30) 

GL 
for the free and bonded condition of L. 

a Some authors [8] have used the net charge of L, as noted below. 
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Substituting these Eqs. (29) and (30), into that for the energy change (28) gives 
a general expression for the energy change in terms of the equilibrium and free 
electronegativities 

_ (xo)  2 
A E L = (31) 

2GL 

Now the extra-ionic resonance ener#y R for the molecule is obviously the sum of 
the changes in atom energies, (i.e. the change in molecular energy upon bond 
formation), within the partition condition, hence 

R = ~ (AE 0 = ~ (X*)2- (X~ (32) 
L L 2GL 

Thus it has been possible to derive the extra-ionic resonance energy expression 
within a molecular orbital framework, in terms of the equilibrium bond electro- 
negativity and free atom (or orbital) electronegativity difference. 

Extant Etectronegativity Equalization Theories 

It is now possible to consider how the various extant theories of electro- 
negativity equalization fit into this general theory, despite their being derived 
outside the molecular orbital theory. 

The first theory is one applicable to the molecule as a whole, and not focussing 
on two centre bonds within the molecule. 

I. Sanderson's Method [8]. The bond electronegativity parameters in Sander- 
son's theory F L and G L are not independent of each other but related by, 

GL = (FL) ~/2 (33) 

Consequently if this relationship is substituted into the equations for the equilib- 
rium electronegativity and charge these become respectively 

\ K / /  (34) 

(1),,2 
and Q~ = \ FL ] (X* - FL). (35) 

Sanderson defines his QL as net atomic charges, not as populations as has been 
done above. These formulae were not of course derived by Sanderson, and it is 
obvious that his assumption that X* is equal to the geometric mean of all the 
F L in a molecule [8] is incorrect. The expression for X* (equation 34) reduces to 
the geometric mean of the FL only in the case of a diatomic molecule with a single 
bond. But while it is thus a theoretically inaccurate theory, practically the use of 
the geometric mean for polyatomics leads to quite small errors since the geometric 
mean is usually a good approximation to Eq. (34). Further it is necessary to 
emphasize that this theory deals with atomic electronegativities, and equalizes 
these over the whole molecule, so that it cannot describe the properties of bonds. 

II. Other Theories. The remaining theories to be considered focus on two 
centred bonds. 
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Initially it will be shown that Eqs. (34) and (35) do reduce to the geometric 
mean for a diatomic molecule, LM, when 

(FL) 1/2 + (FM) 1/2 
X * =  /, 1 "~1/2 { 1 "~1/2 

or X* = (FLFM) 1/2, as assumed by Sanderson in his derivation [8]. 
The general expressions for the equilibrium electronegativity and charge for 

a two-centre bond, whether between atoms or orbitals are: 

X * =  F1G2+F2GI +QGxG2 
G1 + G2 (36) 

F 2 - -F  1 --}-QG 2 
and Q* = (37) 

G1 +G2 
The ionic character i of the bond can be defined as the change in electron density 
at an atom or in an orbital on bond formation, hence 

i =  IQ* - Q~ (38) 

Since, the total electron density Q = ~ Q* then 
L 

Q = QO + QO = Q,  + Q~ (39) 

so that i = (Fz + G: QO) _ (F1 + G1 ao) (40) 
(G1 + Gz) 

0 0 X~ - X1 A X ~ 
= G I + G 2  = G I + G 2  (41) 

since X o = FL + GL QO. (42) 

Thus the ionic character of a two-centre bond is proportional to the difference 
in the free-atom (or orbital) electronegativities, and inversely proportional to the 
sum of the bond electronegativity G parameters. Thus current Electronegativity 
equalization methods which assume that the electronegativity is linearly dependent 
on the charge as in Eq. (21) agree with the intuitive chemical view that the ionic 
character of a bond is proportional to the electronegativity difference. However, 
this general theory proves that no unique function relating i to A X ~ can be 
obtained, since the G parameter differs for each atom, and attempts to find such 
a unique relationship are doomed to failure. 

Wilmhurst [11] intuitively derived as an expression for i, 

i -  IM,- x[I 
x [  + X~ " (43) 

Eq. (41) will only have the form of Eq. (43) if the bond electronegativity function 
is of the form XL = FL + X~ QL 

in which the GL bond electronegativity parameter is replaced by the free neutral 
atom Pauling electronegativity X~. However, the GL parameters are all negative, 
whereas the Pauling electronegativities are always positive, hence the equation 
must be of the form x, =FL-X2Q,~ 
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so that the electronegativity will decrease with increasing negative charge on L. 
In a two-centre bond, atomic neutrality occurs when QL is unity, and this is 
when XL must equal the free atom Pauling electronegativity X~. Therefore 
F e = 2X~ and the final form of the equation necessary to generate Wilmhurst's [11] 
ionic character equation is 

X L = 2XL P -- X[' QL. (44) 

This equation has the property that the free atom Pauling electronegativity is X~', 
the L + electronegativity is 2X~ and the L -  electronegativity is 0. The validity 
of the theory can only be discussed when there is either of theoretical estimation 
or empirical estimation of the FL and GL to compare with 2XL P and - XL P. Theo- 
retically F t has the units of electronegativity and G L of electronegativity per unit 
charge, so that F L should not be equal to - 2G t.  Empirically [12, 7,1 the relationship 
is invalid for the valence states of monovalent atoms in a-bond formation, for 
which the valence state electronegativity is equivalent to the atomic electro- 
negativity of Pauling, invalid for atoms forming re-bonds [12,1 and invalid for 
tetrahedral carbon [7-1, all in a quantitative sense; it is qualitatively invalid in 
that F t 4: - 2 G  L even in sign in many cases [12,1. 

The Hinze, Whitehead, and Jaffe bond electronegativity function Xu(nu) for 
an atomic orbital Ou with occupation number n, gives [7], 

ixo-xol 
i - (45) 

2(G + cv) 

since [7] X.(G) = b. + 2c.n. (46) 

where b. and c. are coefficients. In a two-centre bond formed from AOs initially 
singly occupied 

0 1) = X.(1) (47) x ~  = x . ( n  = nu = 

IXv(1) - X:(1)I 
whence, i = (48) 

2(c, + cv) 

in agreement with the general theory developed above. 
The expression for the extra ionic resonance energy R is also simplified for 

two-centre bonds to 

R = - ( X  ~ -X~ + G2). (49) 

Hence R is proportional to the square of the difference in electronegativities of the 
free atoms before bonding in agreement with Pauling's original ideas [10]. 
There is no unique dependence of R on (X ~ - X~ 2 because GL differs for each atom. 

The Hinze-Whitehead-Jaffe bond orbital electronegativity function gives for 
the extra ionic resonance energy 

R = - [Xv(1) - X"(1)]2 
4(c. + G) (50) 

where q~. and ~b~ are singly occupied valence orbitals [7], which will be identical 
Z to the Z ~ for monovalent  atoms, 

D. Bond Electronegativity Functions 

The only difficulty in applying the electronegativity equalization conditions 
to calculate the electron densities, extra ionic resonance energies, and effective 
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group electronegativities in molecular systems lies in evaluating the bond electro- 
negativity parameters. Numerous  approximate  techniques have been used and 
some of these are briefly considered below in the light of the Parti t ion theory. 

Sanderson [8] used a relation 
SR SR  Xs (QL) ---- Xs (QL ---- 0) + QLbL (51) 

to relate XSL R, the Stability Ratio definition of the Atomic Electronegativity of 
a tom L, to QL the net "partial  charge" of an atom, where t~ L is an empirically 
determined function depending upon the nature of a tom L. He assumed that the 
electronegativities X sR of all the atoms in a molecule should be equalized, in 
agreement with Eq. (10) except that Eq. (10) is an orbital and not an a tom valid 
theory. 

-Cx ~.~ 
9- 

8 

6- 

5 

3 /~ 5 -6x 

Fig. 1. The plot of 3 L against CL for specific atoms X of the first and second periods of the periodic 
table using the results in references [9] and [8] 

Element Cx 3x Element Cx 6x 

F 8.70 4.988 CI 5.65 4.618 
O 7.63 4.749 S 5.08 4.216 
N 6.21 4.408 P 4.47 3.802 
C 5.59 4.050 Si 3.38 3.368 

Iczkowski and Margrave [9-] developed an atomic electroneoativity function 
X A which varied with partial  a tomic charge as a method of estimating the electro- 
negativity function parameters  here represented is BL (i.e. FL) and 2CL (i.e. GL) 

XLa(QL) = BL + 2CLQL = XL(QL = 0) + 2CLQ L . (52) 

The similarity between the definitions of XL a and X sR suggests that the empirical 
functions 6 L and CL should be proport ional  as shown in Fig. 1. Although the C L 
values are available for only eight elements [9-], two different pseudo-linear 
relationships, one for each period of the periodic table, are obtained. Both methods 
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suffer from the fact that they treat atoms as a whole and do not focus in any way 
on the orbitals on the atoms, but they both fit the general partition theory. 

The parameter 6L is evaluated from the empirical relationship [8], 

6L = 2.08 ] / x S R ( Q  L = 0) (53) 

while C L is obtained using atomic energy data; no interatomic energy terms are 
included in the partitioned atom energy terms E L (Eq. 4) and it is therefore im- 
plicitly assumed that the orbital charges obtained by minimizing the sum of the 
E L are identical to those which would be obtained if the entire molecular energy 
EMO L were minimized. 

Hinze et al. [7] defined an orbital elec tronegat iv i ty  X ,  as, 

d(E(n.)) 
X,(nu) = - b, + 2c,  n.  (54) 

dn ,  

in which n u is the electronic charge density of an orbital  and the dependence of 
X, (n . )  on the charge densities of orbitals other than q~, is included in the coefficients 
b. and c, [7]. These coefficients are obtained by using experimentally known 
E(n,)  for n, equal to 0, 1, and 2 [12], as, 

b, = 1.5Iv.  - 0.5 Ev. (55) 

c, = 0.5 (Evu - Iv.). (56) 

The Evu and Ivu are valence s tate  electron affinities and ionization potentials 
respectively [13], whence, 

X, = 0.5(3 Iv.  - Evu ) + (Evu - Ivu)n ~ . (57) 

On the other hand, Klopman expressed electronegativity [5] as, 

~(E" (n,)) n , A  2 
x ~ -  - B .  + - -  (58) 

~n, 2 

where E', is a continuous function of n,  once the bond is f o r m e d  but not when the 
orbital is non-bonded [1]. In this theory the two parameters B,, the attraction 
energy of an electron in orbital q~. for the nucleus and filled inner shells, and A2 
are required. They can be estimated from the known energies of an isolated, non- 
bonded atom, with 

B, = Iv. (59) 

the ionization potential of the electron in orbital q~,, and 

A2 = Ev. - I v .  (60) 

Thus, X~, = Iv" + n,(E~. - Ivu) (61) 
2 

Xs is called the M o l e c u l a r  orbital  bond electronegat iv i ty ,  since it is derived for use 
in the Molecular Orbital theory. 

The energies and electronegativities in the above theories both fit the general 
partition theory and are related by 

A E . = E . - E ' .  

and A X. = X, - X~. 

Thus A E, = 0.5 n,(Iv~ - Ev. ) (1 - 0.5 n,) 

and A X ,  = 0.5(Iv. - Ev.) (1 - n,). 

(62) 

(63) 

(64) 

(65) 
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Bo th  the  te rms  A E u a n d  A X~ increase  as  the  difference be tween  the  ion iza t ion  
p o t e n t i a l  and  e lec t ronaff in i ty  increases ;  A E~ is zero at  n~ = 0 and  n~ = 2 and  a 
m a x i m u m  at  n~ = 1 ; A X~ is zero at  nu = 1 when b o t h  X~ and  X~ are  equal  to  I ~  - E ~ ,  
the  M u l l i k e n  E lec t ronega t iv i ty  def in i t ion  [14], Fig. 2. 

The  phys ica l  s ignif icance o f  the  differences can be seen by  cons ider ing  the 
values at  n~= 1; E'~(n~= 1) is equal  to (3/4I~ + 1 /4E~)  while E~ is s imply  I ~ .  
Thus  the  m o l e c u l a r  o rb i t a l  energy E'~ a t  n~ = 1 is equ iva len t  to  tha t  for two e lec t rons  
each spend ing  one-ha l f  the  t ime  in o rb i t a l  ~b,, wi th  no  cor re la t ion  between the two 
electrons.  O n  the o the r  hand ,  E~ at  n~ = 1, c o r r e s p o n d s  to comple t e  co r re la t ion  
of  the  e lec t ronic  m o t i o n  such tha t  if  the first e lec t ron  occupies  qS,, the second  
e lec t ron  is in the o the r  o rb i t a l  fo rming  the bond .  The  E'~ funct ion underes t imates  
in te r -o rb i t a l  e lec t ron  cor re la t ion ,  while the  E~ funct ion overes t imates  it, since 
e lect ronic  m o t i o n s  are  only  pa r t i a l ly  co r re l a t ed  [15]. 

The  ionic  charac te r s  of  two-cent re ,  two-e lec t ron  chemica l  b o n d s  can  be 
ca lcu la ted  us ing X~ or  X" in Eq, (48). Since X~(n~ = 1) = X',,(n~ = 1) and  since f rom 

Eqs. (56) and  (61) 
c, = 2c'~ (66) 

- ~ "  (67) then iuv - ~zuv �9 
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Fig. 2. The plot of the Hinze, Whitehead and Jaffe energy [7] E u and the Klopman energy [5] E' u 
and their difference A E u in electron volts against the number of electrons in the orbital n.. E. is always 
greater than E' u and AE, is symmetric about nu= 1. The electronegativities Zu and Z'u are the same at 
n~ = 0 or 1 but very different at n~ = 2. E u reaches a maximum before nu = 2; E'~ reaches a maximum 
after nu = 2. 

The example used is chlorine s2p2p2p with the sZp2p 2 as core, whence Iv(op )= 15.08 eV and 
Ev(c~p) = 3.73 eV. Similar curves occur for any other atom or orbital 
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Thus estimates of the ionic character using these two electronegativity functions, 
are in the ratio 1 : 2. 

Since neither of these extremes is a true representation of the system it may 
be more accurate to use energy equations which represent the midway point of 
partial correlation. Thus, 

t t  l t 

E u = : (E ,  + E,) (68) 
= (1.25 Ivu - 0.25 Ev~) nu + n2 (0.375 Evu - 0.375 Ivy). 

The electronegativity for n u = 1 is, 

x " =  0E.' Onu = 0.5 (I~. + E~.) = XMumke, (69) 

the same as for the individual Xu and Xs These three energy relations have 

0E,  = 0, namely at n , =  1.5, n',= 2.0, n~= 1.67. maximum energy as given by 0n,- 

The ionic characters from this latter theory should be more accurate than those 
from either the Hinze et al. or Klopman  theories (see Table), within the limitations 
of the Parti t ion theory. 

Table. The ionic characters of several diatomics, calculated using X"(1) and C'~ (expressed as percentages) 

LiH 31.2 Nail 33.3 
LiF 55.2 NaF 56.7 HF 22.1 
LiC1 52.8 NaC1 54.9 HCI 12.3 FC1 12.9 
LiBr 50.5 NaBr 53.0 HBr 7.3 FBr 18.8 C1Br 6.5 
LiI 48.5 NaI 51.0 HI 5.6 FI 20.5 CII 8.5 BrI 2.2 

These values are calculated assuming pure s or p orbitals on the combining atoms. 

Hinze et al. extended their method to saturated polyatomic molecules by using 
the approximation of localized, two-centre bonds. Repulsions between electrons 
of the same a tom are explicitly considered in this method, and therefore the 
calculations must be iterated to self-consistency. A simplified version of this 
theory, the SGOBE method, has been used extensively 1-17] to calculate electron 
density distributions in a large number  of organic molecules [18] and to derive 
a bond electronegativity function from the LCAO M O  theory [19]. 

Huheey's  method [20] is based on this theory but suffers from the defect of 
equalizing the X of the initially singly occupied bonding atomic orbitals over the 
whole molecule. It is therefore an orbital version of Sanderson's theory. It would 
be a valid approach only if Eq. (3) for the partitioning of the molecular energy was 
valid for a polyatomic system. 

Inclusion o f  Interatomic Terms. Ferriera [2], Jorgenson [16] and others have 
advocated the use of bond electronegativity functions and including interatomic 
attractions and repulsions with the free a tom energy terms in the definition of 
the E L . The effect of this correlation is especially important  in considering bonds 
of high polarity. They will be more fully considered in a later paper, within the 
theory developed in this paper. 
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